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Deconvolution of Thermal Analysis Data using  
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ABSTRACT

Overlapping thermal transitions observed in TGA and DSC 
experiments can be resolved to varying levels of success using 
numerical deconvolution methods. In this work, we demonstrate 
deconvolution with two examples of thermal data fitted using some 
commonly cited mathematical models used for deconvolution of 
asymmetric and tailing data. Despite good quality of the data fit, 
there is significant scatter in the calculated results depending on 
the model chosen, so independent assessment of the bias of the 
analysis is necessary. 

INTRODUCTION

Overlapping transitions like those sometimes encountered in 
spectroscopy and chromatography data are also common in 
thermal analysis data. Consider the TGA data shown in Figure 1 
of the mass loss of an engine oil ‘A’. The oil shows two apparent 
single step changes in mass. The relative symmetry of the 
derivative curves (shown in blue) are a good indicator of two 
monotonous mass losses although it is a subjective observation. 
A common approach to analyzing TGA mass loss data is to use 
the local minimum in the derivative curve as a guide for choosing 
the analysis limits. In the example shown in Figure 1 a result of 
92% for the first mass loss, 8% for the second, and a negligible 
amount of residue was obtained. When the derivative curve is well 
resolved as in the case of engine oil ‘A’, good precision can be 
expected assuming consistency choosing limits.  

Figure 1. TGA Mass Loss and Mass Loss Rate for Engine Oil ‘A’

The analysis for engine oil ‘B’ shown in Figure 2 is not 
straightforward. Notice the inflection in the derivative curve. 
One simple interpretation is that the inflection is due to different 
rates of mass loss caused by different decomposition kinetics in 
this first mass loss event. This may imply the presence of more 

than one component, interaction of two components, possible 
transformation of one component into a form with different 
decomposition kinetics, etc. Estimating the beginning of the 
smaller transition centered around 300 °C is also not as simple 
in oil ‘B’. 

Figure 2. TGA Mass Loss and Mass Loss Rate for Engine Oil ‘B’

The differences in between oils A and B are more apparent when 
the mass loss derivatives are overlaid in Figure 3.

Figure 3. TGA Mass Loss Comparisons for Engine Oils ‘A’ and ‘B’

One approach to analyze overlapping transitions is to apply a 
deconvolution method to the data to determine the relative area 
contribution of the components. 

In the case of TGA, the mass loss data is the summation or integral 
of the decomposition by way of mass loss of the components 
present, so the derivative with respect to either time or temperature 
serves as the function for deconvolution. 
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In the case of DSC data, this is simply the heat flow curve which is 
a differential (Equation 1)

(1)

Where dq/dt is the differential heat flow rate, CP is the specific 
heat capacity, dT/dt is the heating rate (sometimes abbreviated 
as β), and f(T,t) are temperature and time dependent functions. 
A complication of deconvolution of DSC data is the possibility 
of simultaneous endothermic and exothermic transitions often 
prevalent in polymorphic transformations as an example. Careful 
evaluation of these potential kinetic dependent transitions should 
be undertaken before attempting any deconvolution. 

BACKGROUND

The problem of resolving overlapping peaks is certainly not new. 
Asymmetry, significant fronting, and sometimes tailing often 
observed in thermal data results in distributions that are not 
modeled ideally with Gaussian or Lorentzian functions often used 
to deconvolve spectroscopic and chromatographic data. Several 
approaches have been published in the literature using functions 
that fit asymmetric data. Koga and coworkers [1] fit TGA data 
using 9 different mathematical functions including asymmetric 
double sigmoid, asymmetric logistic, extreme value 4 parameter 
fronted, Fraser-Suzuki,  log normal 4 parameter, logistic power 
peak, Pearson IV, Pearson IV (a3 = 2), and Weibull with fitting 
criterion that r2 > 0.99. 

Michael et al. developed a function for deconvolving DSC nickel 
titanium phase transformation heat flow data [2]. Deconvolution 
has been used to separate complex chemical processes for kinetic 
analysis shown in Figure 4 by Khachani et al. [3]

Figure 4. Peak Deconvolution Using Frazer-Suzuki Function; β=7 °C/min [3]

For this work, we fit examples using the following models: Pearson 
IV, Asymmetric Logistic, Extreme Value 4 Parameter Fronted, Log 
Normal 4 Area, Logistic Power Peak, and Exponentially Modified 
Gaussian (EMG).

EXPERIMENTAL

1. Example 1 – Comparison of Two Motor Oils
a. Instrument – TA Instruments Discovery 5500 TGA
b. Heating Rate 1 °C / min (modulated TGA Experiment)
c. Crucible – Pt
d. Purge – N2 at 25 mL / min 
e. Sample Mass - 5 mg nominal

2. Example 2 – Dynamic Curing of Epoxy
a. Instrument – TA Instruments Discovery 2500 DSC
b. Heating Rate - 10 °C / min
c. Purge – N2 at 50 mL / min
d. Crucible – Tzero Aluminum
e. Sample Mass – 2 mg nominal

DATA REDUCTION

TGA and DSC data were exported as text files and analyzed using 
PeakFit v4.12 (Systat). The models used for fitting the data are 
contained in the software. For conciseness, we show illustrated 
data only from the Pearson IV fit.

RESULTS and DISCUSSION

1. Comparison of Two Motor Oils
a. Oil ‘A’ – Figure 5 (same data as Figure 1) shows a typical 

TGA data reduction for this sample. The limits chosen 
where based on the position of the relative minima of 
the derivative curves.  

Figure 5. TGA Mass Loss Data for Oil ‘A’

Figure 6 shows the deconvolution of the derivative of mass loss 
with respect to temperature signal using the Pearson IV model. 
Other models and the resultant area fractions are summarized in 
Table 1
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Figure 6. Deconvolution of Derivative of Mass Loss for Oil ‘A’ Using Pearson 
IV Model

Residuals for Oil ‘A’ are shown in Figure 7

Figure 7. Deconvolution Residuals for Oil ‘A’

Table 1. Area % Calculations for Oil ‘A’ by Model

The quality of the data fit using the models is good but in this case 
the results obtained using the using the derivative minimum as a 
guideline lie withing the scatter range of the results obtained using 
the models. This is explained by the relatively good separation 
of the mass loss events. The scatter of the data set is shown in 
Figure 8.

Figure 8. Scatter of Peak 1 Data in Oil ‘A’ Deconvolution

b. Oil ‘B’ – Figure 9 (same data as Figure 2) shows the 
data reduction for this sample. As stated previously, 
the first mass loss does not appear to be monotonous 
and deconvolution should make improvements to more 
accurately analyze the data.

Figure 9. TGA Mass Loss Data for Oil ‘B’

Figure 10 shows the deconvolution of the derivative of mass loss 
with respect to temperature using the Pearson IV model.

Model Peak 1 % Peak 2 % r2 Standard 
Error

Pearson IV 89.37 10.63 1.000 0.0072
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Logistic 93.30 6.70 0.997 0.0202

Extreme Value 4 
Area Fronted 91.12 8.884 0.999 0.0084

Log Normal-4-
Area 90.82 9.179 1.000 0.0079

Logistic Power 
Peak 93.38 6.622 0.997 0.0211

Exponentially 
Modified 
Gaussian

92.06 7.94 0.998 0.0154

Derivative 
Minimum 91.7 8.26 - -
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Figure 10. Deconvolution of Derivative of Mass Loss for Oil ‘B’ Using 
Pearson IV Model

Residuals for Oil ‘B’ are shown in Figure x.

Figure 11. Deconvolution Residuals for Oil ‘B’

Table 2 compares area fraction differences in oil sample ‘B’ using 
the models and the derivative minimum method.

Table 2. Area % Calculations for Oil ‘B’ by Model
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In this case the quality of the data fit is also good and likely does 
improve the accuracy of the data relative to the derivative minimum. 
There is also significant scatter within the results obtained using 
the models and is shown in Figure 12.

Figure 12. Scatter of Peak 1 Data in Oil ‘B’ Deconvolution

2. DSC Evaluation of Epoxy Curing – This example shows two 
dynamic temperature ramps of a common epoxy. At time t0, 
the DSC analysis is straightforward and is shown in Figure 
13.

Figure 13. Heat Flow of Epoxy Cure at Initial Time (t0) at Heating Rate  
10 °C / min

At time t as the epoxy cures, a second diffusion driven exothermic 
transition becomes apparent shown in Figure 14. 
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Figure 14. Heat Flow of Epoxy Cure at Time (t) at Heating Rate 10 °C / min

In this case where the peaks are poorly resolved, deconvolution is 
a means to a more accurate value for the relative contribution of 
the reaction and diffusion heat flow. Deconvolution of the epoxy 
at time t shown in Figure 15 and residuals are shown in Figure 16.

Figure 15. Deconvolution of Derivative of Mass Loss for Partially Cured 
Epoxy Using Pearson IV Model

Figure 16. Deconvolution Residuals for Partially Cured Epoxy

Table 3 summarizes and compares the relative peak areas of the 
reaction and diffusion heat flow due to the curing of the epoxy.
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Table 3. Area % Calculations for Partially Cured Epoxy by Model

The quality of the data fit using the models in this example is 
also good and likely approaches accurate results. We expect 
that the uncertainty in this particular example would be partially 
mitigated by choosing fit parameters for the reaction (1st exotherm) 
and diffusion exotherms (2nd exotherm) based on the apparent 
symmetry of the reaction exotherm at time t0 assuming that the 
corresponding reaction exotherm at time t (Figure 14) is similar. 
Despite the advantage of obtaining the t0 data, the models yield 
significantly different values. Scatter of the first peak of the 
epoxy data is shown in Figure 17. The choice of the initial fitting 
parameters is subjective, but the PeakFit software makes this 
easy with an interactive interface. A derivative minimum approach 
was not attempted for this sample.

Figure 17. Scatter of Peak 1 Data in Partially Cured Epoxy Deconvolution

CONCLUSIONS

Peak deconvolution is a practical tool to determine a more accurate 
relative contribution of unresolved thermal analysis events and is 
often used to resolve spectroscopic and chromatographic data. 
The mathematical models used for deconvolution in our examples 
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show good correlation and standard error, but also show 
considerable scatter so that it is difficult to determine which yields 
the most accurate result. Independent assessment of the bias and 
error of the utilized model is needed especially in the user’s choice 
of initial fitting parameters. 

We used the same model for fitting each of the peaks in the 
examples and this may be a good starting point but is likely too 
simplistic an approach. 

ACKNOWLEDGMENT

Gray Slough, Ph.D., Product Marketing Specialist at TA Instruments.

REFERENCES

1. Koga, N., Goshi, Y., Yamada, S., Perez-Maqueda, L.; Kinetic 
Approach to Partially Overlapped Thermal Decomposition 
Processes; J Thermal Analytical Calorimetry (2013) 111:1463–
1474

2. Michael, A., Zhou, Z., Yavuz, M., Khan, M.; Deconvolution 
of Overlapping Peaks from Differential Scanning Calorimetry 
Analysis for Multi-Phase NiTi Alloys; Thermochimica Acta 
665(2018) 53-59

3. Khachani, M., Hamidi, A., et al; Kinetic Approach of Multi-
Step Thermal Decomposition Processes of Iron(III) Phosphate 
Dihydrate (FePO4.2H2O); Thermochimica Acta 610 (2015) 29-
36

4. Heinrich, J.; A Guide to the Pearson Type IV Distribution; The 
Collider Detector and Fermilab Website Notes on Statistics;  
https://www cdf.fnal.gov/physics/statistics/notes/cdf6820_
pearson4.pdf

© TA Instruments

5. Wang, T., Arbestain, M., Hedley, M., Singh, B., Pereira, R., 
Wang, C.; Determination of Carbonate-C in Biochars; Soil 
Research, 2014, 52, 495–504, http://dx.doi.org/10.1071/
SR13177

6. QL Yan, Zeman, S., et al.; Multi-stage Decomposition of 
5-aminotetrazole Derivatives: Kinetics and Reaction Channels 
for the Rate-limiting Steps; Phys.Chem.Chem.Phys., 2014, 
16, 24282

7. Leitao, M., Canotilho, J.,Cruz, M., Pereira, J., Sousa, A., 
Redinha, J.; Study of Polymorphism from DSC Melting Curves 
– Polymorphs of Terfenadine; Journal of Thermal Analysis and 
Calorimetry, Vol 68 (2002) 397-412

8. Carbon Component Estimation with TGA and Mixture 
Modeling; https://smwindecker.github.io/mixchar/articles/
Background.html

9. Zhao, S.F., et al. Curing Kinetics, Mechanism and 
Chemorheological Behavior of Methanol Etherified Amino / 
Novolac Epoxy Systems; Polymer Letters Vol.8, No.2 (2014) 
95–106

For more information or to request a product quote, please visit  
www.tainstruments.com/ to locate your local sales office 
information. 


